Measurement of Creatine Kinase (CK) & Creatine Kinase-MB (CK-MB)

Creatine Kinase (CK)

Action of CK:

• **CK** catalyses the conversion of **creatine** and consumes adenosine triphosphate (ATP) to create **phosphocreatine** (**PCr**) and adenosine diphosphate (ADP).

Creatine+ATP *Creatine Kinase* Creatine-p + ADP

(in resting muscle)

(in performing muscle)

• This reaction take place in muscle so CK is important in synthesis of phosphocreatine as source of high energy.

• Creatine kinase (CK), also known as creatine phosphokinase (CPK) or phospho-creatine kinase.

Tissues sources

Main source is skeletal muscle, cardiac muscle (heart) and brain.

Low amounts in other tissues such as stomach, colon, kidney and intestine.

>Negligible amounts in liver & placenta.

Ck Iso-Enzymes

- Has different isoenzymes depending on location:
- <u>Cytosolic isoenzymes:</u>
- Means that isoenzymes found in cytosol (cytoplasm of cell).

Charachtrized of CK is dimer (consisting of 7 polypeptide chains M (muscle) & B (brain) so give 7 iso enzymes.

<u>A- CK-BB (ck ¹):</u>

Found predomintaly in brain and CNS (central nervous system).

• Small amounts in prostate, thyroid, gut and lung So found in little amounts in blood as it found in cerebrospinal fluid).

<u>B- CK-MB (ck ^{*}):</u>

- Found in skeletal muscle by ^v% & cardiac muscle by ^v·-^w, so specific for cardiac muscle (heart).
- Referance range of it represents by less than % of total CK.

<u>C- CK-MM (ck "):</u>

Found perdomintaly in skeletal muscle by $^{\Lambda}$ & cardiac muscle by $^{\vee}$ $^{\wedge}$, so specific for skeletal muscle.

• Represents with high amounts due to muscle mass is high.

^v-Mitochondrial isoenzyme (CK-Mt):

- Fourth type of Ck-Isoenzymes found in mitochondria.
- Rarely seen in serum and when detected in serum it indicates tissues damage with release of mitochondrial contents.

• The major CK isoenzyme in the sera is CK-MM (95%) of the total CK activity.

• CK-MB is found in conc. Less than %.

• CK-BB is rarely detected.

• Serum CK activity is elevated in tissue damages involving skeletal muscle, heart muscle and brain.

Clinical significance

!- Heart diseases:

- CK^(CK-MB) activity in serum increases after myocardial infarction (MI). CK-^(I) levels rise ^(I) to ^(I) hours after a heart attack.
- If there is no further damage to the heart muscle, the level peaks at 17 to 75 hours and returns to preinfarction level in 17 to 5A hours.

 CK-MB usually less than [\]% of the total CK activity, but following an infarction values can increase up to ^{\(\nabla\)}.
 depending on the extent of myocardial damage.

• Ck-MB is more specific in MI diagnostic than CK total.

Y- Skeletal muscle diseases:

High CK activity is found in all types of muscular dystrophy.

Reagents of CK

R۱ (buffer & coenzymes)	R۲ (enzymes):
Imidazol	ADP
Glucose	AMP
Acetyl cysteine	G`PDH
Mg-acetate	Creatine Phosphate
NADP	Hexokinase (HK).
EDTA.	

Principle of CK

- **CK** catalyzes the phosphorylation of ADP in the presence of creatine phosphate to form ATP and creatine.
- Creatine Kinase
 □Creatine Phosphate + ADP ← Creatine + ATP
 □ATP + Glucose <u>HK</u> ADP + glucose-[¬]phosphate.
- □Glucose-٦-phosphate + NADP + G٦PDH → ٦-Phosphogluconate + NADPH +H+.

• The catalytic concentration is determined from the rate of NADPH formation measured at ^w ^c • nm.

> $M W.R + \circ \mu$ serum.

- mix and incubate ^r min and read initial absorbance.
- start the stop watch and read after ', " " min.
- calculate $\Delta A/min$.

• $\Delta A / \min x \ \forall \forall \forall \forall = \dots U/L$

• <u>Normal value:</u>

• Male: ****-\V± U/L** (due to have higher mass than female).

• Female: ۲٦-۱٤ · U/L

